
www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

CMSC201
Computer Science I for Majors

Lecture 13 – Program Design

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Last Class We Covered

• Two-dimensional lists

• Lists and functions

• Mutability

2

Syntax/Logic Errors

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted3

Any Questions from Last Time?

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Today’s Objectives

• To learn about modularity and its benefits

• To see an example of breaking a large
program into smaller pieces

– Top Down Design

• To introduce two methods of implementation

– Top Down and Bottom Up

4

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted5

Modularity

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Modularity

• A program being modular means that it is:

• Made up of individual pieces (modules)

– That can be changed or replaced

– Without affecting the rest of the system

• So if we replace or change one function, the
rest should still work, even after the change

6

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Modularity

• With modularity,
you can reuse and
repurpose your code

• What are some pieces of code you’ve
had to write multiple times?

– Getting input between some min and max

– Using a sentinel loop to create a list

– What else?
7

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Functions and Program Structure

• So far, functions have been used as a
mechanism for reducing code duplication

• Another reason to use functions is to make
your programs more modular

• As the algorithms you design get increasingly
complex, it gets more and more difficult to
make sense out of the programs

8

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Functions and Program Structure

• One option to handle this complexity is to
break it down into smaller pieces

• Each piece makes sense on its own

• You can then combine them together to form
the complete program

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Helper Functions

• These are functions that
assist other functions, or
that provide basic functionality

• They are often called
from functions other
than main()

10

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Planning getValidInt()

• What about a helper function that is called any
time we need a number within some range?

– Grades: 0 – 100

– Menu options: 1 – whatever the last option is

• What should it take in? What should it output?

– Input: the minimum and maximum

– Output: the selected valid number

11

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Creating getValidInt()

• Here is one possible way to implement it:

def getValidInt(minn, maxx):

message = "Enter a number between " + str(minn) + \

" and " + str(maxx) + " (inclusive): "

newInt = int(input(message))

while newInt < minn or newInt > maxx:

print("That number is not allowed. Try again!")

newInt = int(input(message))

return newInt

12

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Using getValidInt()

• Now that the function is written, we can use it

– To get a valid grade
grade = getValidInt(0, MAX_GRADE)

– To get a menu choice
printMenu()

choice = getValidInt(MENU_MIN, MENU_MAX)

– To get a valid index of a list
index = getValidInt(0, len(myList)-1)

13

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Complex Problems

• If we only take a problem in one piece, it may
seem too complicated to even begin to solve

–Create a program that lets two users play a
game of checkers

– Search for and present user-requested
information from a database of music

–Creating a video game from scratch

14

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted15

Top Down Design

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Top Down Design

• Computer programmers often use a divide
and conquer approach to problem solving:

– Break the problem into parts

– Solve each part individually

– Assemble into the larger solution

• One example of this technique is
known as top down design

16

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Top Down Design

• Breaking the problem down into pieces makes it
more manageable to solve

• Top-down design is a process in which:

– A big problem is broken down into small sub-problems

• Which can themselves be broken down into even
smaller sub-problems

–And so on and so forth…

17

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Top Down Design: Illustration

• First, start with a
clear statement of
the problem or
concept

• A single big idea

18

Play
Checkers

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Top Down Design: Illustration

• Next, break it down
into several parts

19

Play
Checkers

Set up
board

Making
a move

Checking
for win

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Top Down Design: Illustration

• Next, break it down
into several parts

• If any of those parts
can be further
broken down, then
the process
continues…

20

Play
Checkers

Set up
board

Making
a move

Checking
for win

Switch
players

Get user
move

Move
piece

Count
pieces

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Top Down Design: Illustration

• And so on…

21

Play
Checkers

Set up
board

Making
a move

Checking
for win

Switch
players

Get user
move

Move
piece

Count
pieces

Get valid
indexes

Check move
validity

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Top Down Design: Illustration

• Your final design
might look like this
chart, which shows
the overall structure
of the smaller pieces
that together make
up the “big idea” of
the program

22

Play
Checkers

Set up
board

Making
a move

Checking
for win

Switch
players

Get user
move

Move
piece

Count
pieces

Get valid
indexes

Check move
validity

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Top Down Design: Illustration

• This is like an
upside-down
“tree,” where
each of the
nodes represents
a single process
(or a function)

23

Play
Checkers

Set up
board

Making
a move

Checking
for win

Switch
players

Get user
move

Move
piece

Count
pieces

Get valid
indexes

Check move
validity

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Top Down Design: Illustration

• The bottom nodes
are “leaves” that
represent pieces
that need to be
developed

• They are then
recombined to
create the solution to
the original problem

24

Play
Checkers

Set up
board

Making
a move

Checking
for win

Switch
players

Get user
move

Move
piece

Count
pieces

Get valid
indexes

Check move
validity

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Top Down Design

• We’ve created a
simplified design
that’s easy to follow

• Still missing a couple
pieces, but it’s a start!

– There’s also no plan
included for main()

in this design

25

Play
Checkers

Set up
board

Making
a move

Checking
for win

Switch
players

Get user
move

Move
piece

Count
pieces

Get valid
indexes

Check move
validity

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Analogy: Essay Outline

• Think of it as an outline for a essay you’re
writing for a class assignment

• You don’t just start writing things down!

– You come up with a plan of the important points
you’ll cover, and in what order

– This helps you to formulate your thoughts as well

26

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted27

Implementing a Design in Code

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Bottom Up Implementation

• Develop each of the
modules separately

– Test that each one
works as expected

• Then combine into
their larger parts

– Continue until the
program is complete

28

Play
Checkers

Set up
board

Making
a move

Checking
for win

Switch
players

Get user
move

Move
piece

Count
pieces

Get valid
indexes

Check move
validity

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Bottom Up Implementation

• To test your functions, you will probably use
main() as a (temporary) test bed

– You can even call it testMain() if you want

• Call each function with different test inputs

– How does the board setup work if it’s 1x1?

– Does the if/else work when switching players?

– Ensure that functions “play nicely” together

29

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Top Down Implementation

• Sort of the “opposite” of bottom up

• Create “dummy” functions that fulfill the
requirements, but don’t perform their job

– For example, a function that is supposed to
get the user move; it takes in the board, but
simply returns that they want to move to 0, 0

• Write up a “functional” main() that calls
these dummy functions

– Helps to pinpoint other functions you may need
30

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Which To Choose?

• Top down? Or bottom up?

• It’s up to you!

–As you do more programming, you will
develop your own preference and style

• For now, just use something – don’t code up
everything at once without testing anything!

31

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

• CTRL+V

– Moves the screen down one “page”

• M + V

– Moves the screen up one “page”

32

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Announcements

• Project 1 is out on Blackboard now

– Design is due by Friday (Oct 20th) at 8:59:59 PM

• Lab 7 is online and available on the website

• Midterm is in class, next time we meet

– Out-of-class reviews held Monday and Tuesday

– Metacognition “quiz” available on Blackboard

• You need to submit it for it to count!

• Closes Tuesday night at 10 PM

33

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Exam Rules

• The midterm is closed everything:

– No books

– No notes

– No cheat sheets

– No laptops

– No calculators

– No phones

34

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Exam Rules

• Place your bag under your desk/chair

– NOT on the seat next to you

• You may have on your desk:

– Pencils, erasers

• You must use a pencil, not a pen

– Water bottle

– UMBC ID

• You must bring your UMBC ID with you to the exam!
We won’t accept your test without it.

35

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Exam Rules

• Your TA or instructor may ask you to
move at any time during the test

– This doesn’t mean we think you’re cheating

• That being said, DO NOT CHEAT!!!

• Cheating will be dealt with severely and
immediately

– If a TA or instructor sees you looking at another
student’s paper they may take your test from you

36

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Exam Seating

• Space allowing, you will sit every other seat,
so that you are not next to another student

• Your instructor may have specific instructions
for their lecture hall seating arrangements

37

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Exam Advice

• Write down your name, sign the Academic
Integrity agreement, and circle your section

– Make sure your name is legible

• Flip through the exam and get a feel for the
length of it and the types of questions

– The programming problems are the last
questions on the exam – don’t leave
them until the last minute!

38

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Exam Advice

• Most questions have partial credit

– You should at least attempt every problem

– If you don’t know how to do one part of the
problem, skip it and do the rest

– You can use comments instead of code
(like “# get user input”)
if you know what you want a piece
of code to do but not how to do it

39

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Exam Advice

• After you are done coding the programming
problems, try “running” your program with
some input and making sure it works the way
you think it does

• If a problem is unclear or you think there is an
error on the exam, raise your hand

40

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Image Sources
• Puzzle pieces (adapted from):

– https://pixabay.com/p-308908/

• Helping hands:

– https://pixabay.com/p-40805/

• Checkers:

– https://en.wikipedia.org/wiki/File:The_Childrens_Museum_of_Indiana
polis_-_Checkers.jpg

41

