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CMSC201
Computer Science I for Majors

Lecture 13 – Program Design
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Last Class We Covered

• Two-dimensional lists

• Lists and functions

• Mutability
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Syntax/Logic Errors
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Any Questions from Last Time?
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Today’s Objectives

• To learn about modularity and its benefits

• To see an example of breaking a large 
program into smaller pieces

– Top Down Design

• To introduce two methods of implementation

– Top Down and Bottom Up
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Modularity
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Modularity

• A program being modular means that it is:

• Made up of individual pieces (modules)

– That can be changed or replaced

– Without affecting the rest of the system

• So if we replace or change one function, the 
rest should still work, even after the change

6
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Modularity

• With modularity, 
you can reuse and 
repurpose your code

• What are some pieces of code you’ve 
had to write multiple times?

– Getting input between some min and max

– Using a sentinel loop to create a list

– What else?
7
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Functions and Program Structure

• So far, functions have been used as a 
mechanism for reducing code duplication

• Another reason to use functions is to make 
your programs more modular

• As the algorithms you design get increasingly 
complex, it gets more and more difficult to 
make sense out of the programs

8



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Functions and Program Structure

• One option to handle this complexity is to 
break it down into smaller pieces

• Each piece makes sense on its own

• You can then combine them together to form 
the complete program
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Helper Functions

• These are functions that 
assist other functions, or 
that provide basic functionality

• They are often called 
from functions other 
than main()
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Planning getValidInt()

• What about a helper function that is called any 
time we need a number within some range?

– Grades: 0 – 100

– Menu options: 1 – whatever the last option is

• What should it take in?  What should it output?

– Input: the minimum and maximum

– Output: the selected valid number

11
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Creating getValidInt()

• Here is one possible way to implement it:

def getValidInt(minn, maxx):

message = "Enter a number between " + str(minn) + \

" and " + str(maxx) + " (inclusive): "

newInt = int(input(message))

while newInt < minn or newInt > maxx:

print("That number is not allowed.  Try again!")

newInt = int(input(message))

return newInt
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Using getValidInt()

• Now that the function is written, we can use it

– To get a valid grade
grade = getValidInt(0, MAX_GRADE)

– To get a menu choice
printMenu()

choice = getValidInt(MENU_MIN, MENU_MAX)

– To get a valid index of a list
index = getValidInt(0, len(myList)-1 )

13
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Complex Problems

• If we only take a problem in one piece, it may 
seem too complicated to even begin to solve

–Create a program that lets two users play a 
game of checkers

– Search for and present user-requested 
information from a database of music

–Creating a video game from scratch
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Top Down Design
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Top Down Design

• Computer programmers often use a divide 
and conquer approach to problem solving: 

– Break the problem into parts

– Solve each part individually

– Assemble into the larger solution

• One example of this technique is 
known as top down design

16
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Top Down Design

• Breaking the problem down into pieces makes it 
more manageable to solve

• Top-down design is a process in which:

– A big problem is broken down into small sub-problems

• Which can themselves be broken down into even 
smaller sub-problems

–And so on and so forth…
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Top Down Design: Illustration

• First, start with a 
clear statement of 
the problem or 
concept

• A single big idea

18

Play 
Checkers
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Top Down Design: Illustration

• Next, break it down 
into several parts
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Play 
Checkers

Set up 
board

Making 
a move

Checking 
for win



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Top Down Design: Illustration

• Next, break it down 
into several parts

• If any of those parts 
can be further 
broken down, then 
the process 
continues…
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Top Down Design: Illustration

• And so on…
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Top Down Design: Illustration

• Your final design 
might look like this 
chart, which shows 
the overall structure 
of the smaller pieces 
that together make 
up the “big idea” of 
the program
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Top Down Design: Illustration

• This is like an 
upside-down 
“tree,” where 
each of the 
nodes represents 
a single process 
(or a function) 
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Top Down Design: Illustration

• The bottom nodes 
are “leaves” that 
represent pieces 
that need to be 
developed

• They are then 
recombined to 
create the solution to 
the original problem
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Top Down Design

• We’ve created a 
simplified design 
that’s easy to follow

• Still missing a couple 
pieces, but it’s a start!

– There’s also no plan 
included for main() 

in this design
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Analogy: Essay Outline

• Think of it as an outline for a essay you’re 
writing for a class assignment

• You don’t just start writing things down!

– You come up with a plan of the important points 
you’ll cover, and in what order

– This helps you to formulate your thoughts as well

26
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Implementing a Design in Code
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Bottom Up Implementation

• Develop each of the 
modules separately

– Test that each one 
works as expected

• Then combine into 
their larger parts

– Continue until the 
program is complete
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Bottom Up Implementation

• To test your functions, you will probably use 
main() as a (temporary) test bed

– You can even call it testMain() if you want

• Call each function with different test inputs

– How does the board setup work if it’s 1x1?

– Does the if/else work when switching players?

– Ensure that functions “play nicely” together

29
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Top Down Implementation

• Sort of the “opposite” of bottom up

• Create “dummy” functions that fulfill the 
requirements, but don’t perform their job

– For example, a function that is supposed to 
get the user move; it takes in the board, but 
simply returns that they want to move to 0, 0

• Write up a “functional” main() that calls 
these dummy functions

– Helps to pinpoint other functions you may need
30
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Which To Choose?

• Top down?  Or bottom up?

• It’s up to you!

–As you do more programming, you will 
develop your own preference and style

• For now, just use something – don’t code up 
everything at once without testing anything!

31
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• CTRL+V

– Moves the screen down one “page”

• M + V

– Moves the screen up one “page”

32
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Announcements

• Project 1 is out on Blackboard now

– Design is due by Friday (Oct 20th) at 8:59:59 PM

• Lab 7 is online and available on the website

• Midterm is in class, next time we meet

– Out-of-class reviews held Monday and Tuesday

– Metacognition “quiz” available on Blackboard

• You need to submit it for it to count!

• Closes Tuesday night at 10 PM

33
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Exam Rules

• The midterm is closed everything:

– No books

– No notes

– No cheat sheets

– No laptops

– No calculators

– No phones

34
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Exam Rules

• Place your bag under your desk/chair

– NOT on the seat next to you

• You may have on your desk:

– Pencils, erasers

• You must use a pencil, not a pen

– Water bottle

– UMBC ID

• You must bring your UMBC ID with you to the exam!  
We won’t accept your test without it.

35
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Exam Rules

• Your TA or instructor may ask you to 
move at any time during the test

– This doesn’t mean we think you’re cheating

• That being said, DO NOT CHEAT!!!

• Cheating will be dealt with severely and 
immediately

– If a TA or instructor sees you looking at another 
student’s paper they may take your test from you

36
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Exam Seating

• Space allowing, you will sit every other seat, 
so that you are not next to another student

• Your instructor may have specific instructions 
for their lecture hall seating arrangements

37
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Exam Advice

• Write down your name, sign the Academic 
Integrity agreement, and circle your section

– Make sure your name is legible

• Flip through the exam and get a feel for the 
length of it and the types of questions

– The programming problems are the last 
questions on the exam – don’t leave 
them until the last minute!
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Exam Advice

• Most questions have partial credit

– You should at least attempt every problem

– If you don’t know how to do one part of the 
problem, skip it and do the rest

– You can use comments instead of code
(like “# get user input”)
if you know what you want a piece 
of code to do but not how to do it

39



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Exam Advice

• After you are done coding the programming 
problems, try “running” your program with 
some input and making sure it works the way 
you think it does

• If a problem is unclear or you think there is an 
error on the exam, raise your hand

40
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Image Sources
• Puzzle pieces (adapted from):

– https://pixabay.com/p-308908/

• Helping hands:

– https://pixabay.com/p-40805/

• Checkers:

– https://en.wikipedia.org/wiki/File:The_Childrens_Museum_of_Indiana
polis_-_Checkers.jpg
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